UNIVERSITY OF MEDICAL SCIENCES, ONDO

DEPARTMENT OF PHYSIOLOGY

PHS 212: BLOOD AND BODY FLUID PHYSIOLOGY LECTURER: MR A.O. AKINOLA

OBJECTIVES

- Introduction
- Definition of body fluids and body fluid compartments
- Physiological variation of body fluid volumes
- List the ionic composition of different body compartments
- Regulation of body fluid volumes
- Techniques for quantifying various body fluid volumes

Introduction

Water is the major constituent of all body fluid compartments.

➢ In an adult human, average of 70-kilogram

Total body water is about 60 per cent of the body weight, or about 42 liters.

PHYSIOLOGICAL VARIATION OF BODY FLUID VOLUME

Most of the variation in body fluid between individuals is as a result of variation in amount of body fat or adipose tissue (fat is only about 10% water)

- ➢ Infant: 73-80%
- ➤ Male adult: 60%
- ➢ Female adult: 40-50%
- ➢ Effects of obesity
- ➢ Old age 45%

Normal Daily Fluid Input and Output

Inputs	Outputs
Ingestion	≻Gut (Faeces 100ml)
Fluid (1.25 Liters)	≻Urine (1.5 Liters)
Food (1 Liter)	➢Breathing/Skin (900ml)
≻Metabolism (350 ml)	Sweating (100ml)
≻Total (2.6 Liters)	≻Total (2.6 Liters)

Abnormal Fluid Input and Output

Inputs	Outputs
► Injection/Infusion	≻Gut
≻Hyperdipsia	 Vomiting
	 Diarhoea
	≻Skin- Burns
	≻Sweating-
	Excessive
	➤Urine- Diabetes insipidus
	≻Haemorrhage

PERCENTAGE OF WAT	ER IN TISSUES
Average 70 kg person	total body weight
▶ 42 litres total H2O	60%
28 liters Intracellular fluid (ICF)	40%
14 liters Extracellular fluid (ECF)	20%

ECF is divided into ³/₄ ISF and ¹/₄ plasma water

- ➤ 10.5 liters Interstitial fluid (ISF)
 15%
- ➤ 3.5 liters Plasma water
 5%
- All the transcellular fluids together constitute about 1 to 2 liters.

IONIC COMPOSITION OF BODY FLUIDS (mEq/l)

Substance	ICF	ISF	Plasma
Cations			
Na ⁺	14	140	142
K ⁺	150	5	5
Ca ²⁺	2	5	5
Mg^{2+}	30	2	2
Anions			
Cl-	10	113	113
HCO ₃ -	10	27	27
HPO ₄ -/H2PO ₄ -	113	2	2
SO ₄ ²⁻	20	1	1
Protein	74	2	16

REGULATION OF BODY FLUID VOLUME

The hypothalamus achieve this by two mechanisms:

THIRST MECHANISM

- > Thirst centre in the hypothalamus contains osmoreceptors
- > When ECFV decreases then osmolarity increases
- Some of the stimulated and this activate the thirst centre
- ➤ Thirst is initiated
- \succ The person feels thirsty and drink water
- ➢ ECF volume increases and ECF osmolarity decreases

ADH MECHANISM

- > When ECFV decreases, ECF osmolarity increases
- Supraoptic nucleus in the hypothalamus is stimulated
- > ADH is released
- > ADH causes retention of water by facultative reabsorption
- ECFV increases and osmolarity decreases
- > On the contrary, when ECFV increases
- ➢ No ADH is released, decrease water reabsorption

MEASUREMENT OF BODY FLUID VOLUME

- Can be done both directly (indicator dilution method) and indirectly
- > By injecting substances that will stay in one compartment
- Then calculate the volume of fluid in which the test substance is distributed (volume of distribution of injected material)
- ➢ Volume of distribution
 - = <u>amt. of substance injected- amt. excreted/metabolized</u> concentration of the substance in the sample

Example: 150mg of sucrose is injected into a 70kg man. The plasma sucrose level after mixing is 0.01mg/ml, and 10mg has been excreted or metabolized during the mixing period. Calculate the volume of distribution of sucrose

CHARACTERISTICS OF MARKER SUBSTANCE/INDICATOR

- Must be non-toxic
- > Must mix evenly throughout the compartment being measured
- Must have no effect of its own on the distribution of water or other substances in the body
- It must be unchanged by the body during mixing period, or the amount changed must be known
- \succ It must be easy to measure

MEASUREMENT OF TOTAL BODY WATER

- ≻Using indicator dilution method
- ► Indicators include:

- ➢ Radioactive water (tritium, ³H₂O) or heavy water (deuterium, ²H₂O) and antipyrine
- > They mix with TBW within few hours of injection

MEASUREMENT OF ECF VOLUME

- ➢ Using indicator dilution method
- Indicators include:
- Radioactive sodium, radioactive chloride, thiosulphate ion, inulin, mannitol and sucrose
- The substances mix almost completely throughout ECFV within 30-60mins

MEASUREMENT OF PLASMA VOLUME

≻Using indicator dilution method

- Indicators include: Evan's blue (T-1824) and radioactive iodine(¹³¹I)
- > The substance binds with plasma proteins strongly
- ≻Diffuses into ISF in small quantity or not at all

INDICATORS USED FOR MEASURING PLASMA VOLUME, ECF VOLUME AND TOTAL BODY H₂O

Compartment Criterion

Indicators

- Plasma Substance should not cross capillaries
 Plasma Substance should not cross or adioiodinated fibrinogen;
 radioiodinated albumin
- •ECF volume Substance should Isotonic solutions of sucrose, cross capillaries inulin, mannitol, NaCl but not cross cell membranes

•Total body H₂O (TBW) SubstanceHeavy H_2O , tritiated H_2O ,distributes evenlyaminopyrine, antipyrinein ICF & ECF-

Blood volume /Markers used Obtained from plasma volume and hematocrit ➤ Total blood volume = <u>Plasma volume</u> 1- Hematocrit

Example: If the plasma volume is 4 liters and the hematocrit is 0.45, total blood volume is ?

Take this problem:

100 mg of sucrose is injected into a 70 kg man. The plasma sucrose level after mixing is 0.01 mg/ml. If 5 mg has been metabolized during this period, then, what is the ECF volume?

9.5 L

14 L

17.5 L

10 L

COMPARTMENTS WITH NO COMPARTMENT-SPECIFIC SUBSTANCE

Determine by subtraction:

- ≻How would you measure ICF volume?
- Cannot be measured; it is calculated (estimated)..
- > ICF volume = Total body H₂O ECF volume

 Interstitial volume:
 ➢ Can not be measured directly
 ➢ Interstitial Fluid Volume (ISFV): ISFV = ECFV - PV

Please emulate the biblical Bereans (Acts 17:11)

END OF LECTURE